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Abstract

We present our work on building a generic episodic
memory module. Such a memory module is intended
to provide episodic memory functionality like storage
and retrieval for different applications and tasks. We
developed a generic representation, storage and retrieval
mechanisms for such episodes. An episode consists of
a sequence of events, along with the context in which
they occurred and their outcome. We then discuss how
such a memory module can be used for complex event
processing tasks like: recognition, prediction, pattern
mining for events, etc.

Introduction

Complex Event Processing (CEP) is concerned with devel-
oping tools and techniques for analyzing and controlling the
complex series of interrelated events, the kind that are more
and more frequently found in modern distributed informa-
tion systems (Luckham 2002). CEP employs techniques
such as detection of complex patterns of many events, event
correlation and abstraction, event hierarchies, and relation-
ships between events such as causality, membership, and
timing, and event-driven processes.

There has been renewed interest recently in Al applica-
tions to enhance intelligent agents with a memory of their
past functioning. The inspiration for such work is the human
episodic memory, a functionally distinct subsystem of hu-
man memory that is concerned with storing and remember-
ing specific sequences of events pertaining to a person’s on-
going perceptions, experiences, decisions and actions (Tul-
ving 1983).

We believe there is a lot of overlap between research in
building an episodic memory for an intelligent system and
research in complex event processing. This paper briefly
presents some background in human episodic memory re-
search and then describes our approach to building a generic
episodic memory for an intelligent system. We then discuss
how the results of our work on episodic memory can be ap-
plied in the domain of complex event processing.
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Human Episodic Memory

This ability of humans to rapidly acquire episodic memo-
ries has been the focus of considerable research in psychol-
ogy and neuroscience, and there is a broad consensus that
this form of memory is distinct both in its functional proper-
ties and in its neural basis from other forms of memories in-
volving common sense knowledge, perceptual-motor skills,
priming, and simple classical conditioning (Shastri 2001).

Episodic Memory refers to a memory that maintains a
record of ‘events’ pertaining to a person’s ongoing percep-
tions, experiences, decisions and actions (Tulving 1983).
Episodic memory is concerned with unique, concrete, per-
sonal experience dated in the rememberer’s past (e.g. our
last trip to the mall), while semantic memory (Feigenbaum
1995) refers to a person’s abstract, timeless knowledge of
the world that he/she shares with others (e.g. the color of
the sky). Episodic and semantic memory subsystems are
thought to be functionally distinct but closely interacting
memory systems (Tulving 1983).

The episodic and semantic memory subsystems have a
number of similarities: they deal with knowledge acquisi-
tion mostly through senses, this knowledge is retained in a
passive and automatic way, requiring no effort on the part of
the subject, and they both use this knowledge, retrieval being
triggered by stimuli, subjects are not being aware of it, but
only of its results.

Both episodic and semantic memories are thought to be
propositional in nature - they can be contemplated intro-
spectively, can be communicated to others in some symbolic
form and questions about their veridicality can be asked.
These characteristics contrast with those of the procedural
memory (Winograd 1975), a memory subsystem concerned
with the acquisition and utilization of procedures and skills,
which is non-propositional.

Although they have a number of similarities, episodic
and semantic memories differ significantly in other respects.
These differences can be categorized along three dimen-
sions: the kind of information they handle (specific vs. ab-
stract) and their operation (acquired through one-shot learn-
ing, provide limited inferential capabilities, susceptible to
change due to retrieval vs. gradually acquired, having rich
inferential capabilities and relatively stable).

A memory system is widely believed to have three high-
level activities: encoding, storage and retrieval. Each of



these activities achieves a particular set of functions (Tulv-
ing 1983).

Encoding is the process that converts a perceived event
into a memory representation. It consists of activation (the
process of determining when a new episode needs to be
recorded), salient feature selection (deciding what infor-
mation will be stored), and cue selection (deciding what
features of the state will cue the memory). From a com-
putational point of view, another aspect of encoding is the
particular representation of episodes and their organization
in memory.

Storage deals with how stored episodes are maintained
over time (storage medium). Forgetting means preventing
recall of episodes (or portions of episodes).

Retrieval is the process by which encoded episodes be-
come available again to the agent. Retrieval is triggered
by the agent’s state and is based on cues, especially salient
or significant parts of the retrieval information. Cue con-
struction is the process of constructing the data used to re-
trieve a memory. Matching uses these cues in order to search
for similar episodic memories. Recall means retrieving the
memory from storage and placing it into working memory.
After this process completes, the memory becomes available
for the agent to use.

A Generic Episodic Memory Module

Our research addresses a long recognized need for general
tools to aid the development of knowledge-based systems
(van Melle, Shortliffe, and Buchanan 1984). We attempt
to enhance an intelligent system with capabilities to cap-
ture, organize and reuse the experience it acquires during
the course of its functioning. Although we seek inspiration
from the human episodic memory, we do not attempt to build
a model of it, but merely to replicate some of its functional-
ity such that it can be used by an intelligent system.

We propose to separate the memory functionality from the
system itself and to build a generic memory module that can
be attached to a variety of applications in order to provide
memory functionality (Tecuci 2007).

Encapsulating the complexity of such a memory into a
separate subsystem should reduce the complexity of other
parts of the overall system, allowing us to focus on the
generic aspects of memory organization and retrieval and its
interaction with the external application. Each application
will use the retrieved memories differently, depending on
their task. We do not propose complete solutions for prob-
lem solving in these domains as this would require domain
specific knowledge (e.g. for adapting prior plans); rather,
the episodic memory will have a supporting role.

As the system needs to store its individual experiences, we
chose to implement episodic memory functionality for our
module as opposed to semantic (i.e. a memory for generic
knowledge). Additionally, the system’s experiences can eas-
ily be described in terms of its actions and the order in which
they were taken (e.g. sequence of application of operators in
a search-space problem).

Using such a memory module, an intelligent system can
store, recall and reuse experience of virtually every reason-
ing action taken. This is a different kind of knowledge that

captures the result and also the context in which a reason-
ing action was taken. Availability of such knowledge can
improve both the correctness and the performance of a rea-
soning system by focusing on actions that are more likely
to produce desirable results, given the history of their past
applications.

The functionality of such a memory system in terms of its
ability to store, organize and retrieve sequences of events
makes it easily applicable to event processing tasks like
complex event recognition, prediction, discovery of similar
events, etc.

General Memory Requirements

A generic memory module should be: accurate (it should re-
turn memories relevant for the situation at hand), scalable (it
should be able to accommodate a large number of episodes
without a significant decrease in performance), efficient (it
should provide efficient storage and recall), content address-
able (memory items should be addressable by their content),
and should provide flexible matching (the appropriate previ-
ous episodes should be recalled even if they only partially
match the current context).

From a software application perspective, a generic mem-
ory module for events needs to provide: a generic repre-
sentation of events that can be used with different types
of events; a flexible interface that allows various types of
queries to be formulated and provides feedback to the appli-
cation on how these queries were matched against memory,
and domain-independent organization and retrieval tech-
niques that efficiently index events.

Representation

The episode is the basic unit of information that memory
operates on. The decision as to what constitutes a mean-
ingful episode is domain dependent and left to the external
application to make. In general, an episode is a sequence of
actions with a common goal, which cannot be inferred from
the individual actions taken in isolation.

Episodes are dynamic in nature, changing the state of the
world in complex ways. Besides the sequence of actions
that make up the episode, the context in which the episode
happens, as well as its effect on the world, are important.
We propose to represent a generic episode as a triple: con-
text, contents and outcome. Context is the general setting
in which an episode happened; for some applications (e.g.
planning) this might be the initial state and the goal of the
episode (the desired state of the world after the episode is
executed). Contents is the ordered set of events/actions that
make up the episode; in the case of a planner, this would be
the plan itself. The outcome of an episode is an evaluation
of the episode’s effect (e.g. if a plan was successful or not,
what failures it avoided).

Episodes will be indexed along each of these three dimen-
sions. This allows the same memory structure to be used for
various tasks that require reasoning about actions. For ex-
ample, a memory of plan goals, their corresponding plans
and whether or not they were achieved by a given plan can
be used for tasks such as:



planning - given an initial state and a goal, devise a plan
to accomplish the goal. In terms of our representation
this corresponds to memory retrieval using episode con-
text (i.e. initial state and goal of a planning problem) and
adapting the contents of the retrieved episodes (i.e. their
plans).

prediction - given an initial state and sequence of actions,
predict their outcome. This corresponds to retrieval based
on episode context and using the outcome of the retrieved
episodes.

explanation - given a set of observations (including ac-
tions) find the best explanation for it. An example of
this is plan recognition, where the explanation is the plan
being executed. This corresponds to retrieval based on
episode contents (i.e. observed actions) and adapting the
context of retrieved episodes.

The semantics of individual actions (i.e. their applicabil-
ity conditions and the goals they achieve), as well as knowl-
edge about the state of the world is represented using our
knowledge base - a library of about 700 general concepts
such as Transport, Communicate, Enter and 80 se-
mantic relations like agent, object, causes, size
(Barker, Porter, and Clark 2001). The underlying repre-
sentation language and reasoning engine is KM (Clark and
Porter 2001).

Memory API

The memory module provides two basic functions: store
and retrieve. Store takes a new Episode represented as a
triple [context, contents, outcome] and stores it in memory,
indexing it along one or more dimensions; retrieve takes a
stimulus (i.e. a partially specified Episode) and a dimen-
sion and retrieves the most similar prior episodes along that
dimension. Memory retrieval provides also information on
how a stimulus matched the retrieved episodes (e.g. shared
structure, differences, mappings). This information is in-
tended to be used by the external application that works in
connection with the memory module and helps it better uti-
lize the returned episodes for its purpose (e.g. adaptation).

Memory Organization and Retrieval

Episodes are indexed using a multi-layer indexing scheme
similar to MAC/FAC (Forbus, Gentner, and Law 1995) and
Protos (Porter, Bareiss, and Holte 1990): a shallow indexing
in which each episode is indexed by all its features taken in
isolation and a deep indexing in which episodes are linked
together by how they differ structurally from one another.

During retrieval, shallow indexing will select a set of
episodes based on the number of common features be-
tween them and the stimulus. Starting from these can-
didate episodes, a hill-climbing algorithm using semantic-
matching will find the episode(s) that best match the exter-
nal stimulus. A robust memory needs to employ a flexible
matching algorithm, so that old situations are still recog-
nized under new trappings. The semantic matcher we use
(Yeh, Porter, and Barker 2003) employs taxonomic knowl-
edge, subgraph isomorphism and transformation rules in or-
der to resolve mismatches between two representations.

It is the organization of memory given by this indexing
mechanism and the search-based retrieval that sets our ap-
proach apart from those employing a flat memory struc-
ture that is searched serially (e.g. (Nuxoll and Laird 2004;
Forbus, Gentner, and Law 1995)).

The ability to deal with streams of events is important
in a lot of applications (e.g. surveillance), which typically
require making a decision/prediction after each observa-
tion. Incremental availability of data seems to increase re-
trieval time as memory needs to perform retrieval after the
presentation of each new stimulus. However, incremental
data reduces the size of each query, while the context of
the previously observed actions reduces the search space.
(Schmidt, Sridharan, and Goodson 1978; Schank 1982;
Litman and Allen 1987).

Our incremental retrieval algorithm (see Algorithm 1)
functions as follows: after an action is observed, revise the
current set of hypotheses so that they account for the last
seen stimulus. This is done by trying to match the stimu-
lus against current hypotheses or by generating new ones.
New hypotheses are generated using the shallow indexing
mechanism that retrieves episodes that are superficially sim-
ilar to the given query. We limit the number of such new
hypotheses to the most likely N (we have experimented with
N=5 and N=10). Current hypotheses are then semantically
matched to the new stimulus and, based on the result, they
are re-ranked according to their similarity to the plan ob-
served so far. Mismatches between an observed action and
the action of a prior episode are allowed. Memory treats
both as possibly superfluous actions.

Algorithm 1 Incremental-retrieve algorithm

candidates < []
observed-actions <« []
while there are observed-actions left do
curr-action «— pop (observed-actions)
new-candidates «— retrieve(current-action)
for all episode € new-candidates do
if episode ¢ candidates then
synchronize-candidate(episode, prior-actions)
end if
end for
for all candidate € candidates do
candidate-match < match(curr-action, candidate)
if candidate-match # [] then
candidates < update-candidate(candidate-match)
else
candidates «<— update-candidate(candidate-match)
end if
end for
candidates «— sort(candidates)
prior-actions «— prior-actions U current-action
end while
result < sort(candidates)
return first-n (*MAX-RETRIEVED?*, result)

The complexity of this incremental retrieval algorithm in
the best case is linear in the number of actions observed



(s) and the maximum number of reminded episodes ex-
plored for a new stimulus (N). The worst case complexity is
O(Ns?), but rarely happens in practice (Tecuci 2007). Un-
like statistical approaches, the complexity is not a function
of the number of goal schemas, but only of the number of
observed actions.

Episodic Memory and Complex Event
Processing

This section explores the ways in which research on building
and using such a generic episodic memory can contribute
to the area of complex event processing. In what follows,
episodes and complex events will be used interchangeably.

Episode Similarity

The episode representation proposed in the previous section
uses an ontology to describe individual event types and their
parameters (e.g. the domain objects it employs). Adding se-
mantics to individual events allows the processing of simple
and complex events at a semantic rather than syntactic level.
For example, the similarity of two individual events can be
better judged even when they are not of the same, by exam-
ining how their respective types are taxonomically related.
For example, when computing the similarity between two
Linux commands like Copy-File and Move-File, one
can use the fact that both are a kind of file creation.

Many tasks involving complex events (e.g. recognition
tasks) require computing the similarity between two se-
quences of events. Most measures of semantic similarity
compute similarity between two such objects with respect
to one of them. This does not deal well with noise, as the
superfluous actions in the reference episode artificially de-
crease the overall similarity score. One similarity metric that
we used is defined as the product of the two individual sim-
ilarity scores when each object is in turn the reference one.

sim(Ey, Ey) = semsim(FEy, Eq) x semsim(Es, Ey)

where semsim(Eq, E2) is the similarity between the
episodes Fy and F; with respect to Fs:

semsim(Er, Eo) =3, p g, match — score(t;) /| Es|

where E; and E5 are episodes (i.e. sequences of events),
FEy ~ FE5 represents the isomorphic mapping from F; to
Es; t; represents the isomorphic relation between a vertex
in the E; graph and its corresponding counterpart in FEs;
and match — score(t;) measures how well the two vertices
match and is a number between 0 and 1 provided by the
matcher.

Complex Event Recognition

A large class of established Al applications relies on rec-
ognizing complex ongoing events: language understand-
ing and response generation (Allen and Perrault 1986; Per-
rault and Allen 1980), user interfaces (Goodman and Lit-
man 1992), help systems (Mayfield 1992), and collaborative
problem solving (Lesh, Rich, and Sidner 1999). There are
also emerging applications that could benefit from this: se-
curity threat detection, business activity monitoring, etc.

We believe that memory recognition is applicable to this
class of problems. To test this, we applied the episodic-
based approach to the problem of goal schema recognition
(i.e. given a sequence of observed actions, predict the plan
that is being executed) (Tecuci 2007).

A memory-based approach to this problem has the advan-
tage that it does not require all recognizable plans (or plan
schemas) to be known in advance, but is able to dynamically
grow the plan library. However, due to the instance-based
nature of such an approach, it has to provide a scalable way
of plan storage and retrieval.

We performed an evaluation on the goal schema recogni-
tion task on two datasets (Linux (Blaylock and Allen 2004)
and Monroe (Blaylock and Allen 2005a)). The Linux plan
corpus was gathered from Linux users from the University
of Rochester, Department of Computer Science, who were
given goals like ‘find a file with exe extension’ and were
instructed to achieve it using simple Linux commands. All
user commands along with their results were recorded. For
each goal, users were also asked to assess whether they ac-
complished it. The users judged 457 sessions to be success-
ful involving 19 goal types and 48 action types (i.e. Linux
commands). Because some users were not able to judge this
correctly, the dataset is noisy (i.e. there are still a number of
failed sessions marked correct).

The Monroe corpus consists of stochastically generated
plans in the domain of emergency response. The plans have
been generated by allowing a planner to make nondetermin-
istic decisions and therefore generating a diverse set of plans
(in terms or ordering of their actions) for the goal. It contains
5000 plans with an average of 9.5 actions per plan, a total of
10 goal types and 30 action types.

Our experiments showed that the episodic-based approach
achieves similar performance to a statistical approach (Blay-
lock and Allen 2005b) and that memory retrieval is scalable
(retrieval effort does not grow at the same rate as memory
size).

We measured the accuracy of the recognizer in terms of
Precision (P) and Recall (R). Precision is the number of
correct predictions divided by the total number of predic-
tions (i.e. the number of times the recognizer chooses to
make a prediction), while recall is the number of correct pre-
dictions divided by the number of predictions opportunities
(i.e. the number of observed actions). They measure the
overall accuracy of the recognizer as it includes predictions
made after each new observed action.

A measure of how many plans were eventually recognized
is denoted by convergence (Conv), which is the number of
correct predictions after the last plan action was observed.
A recognition session is said to have converged if its last
prediction was correct.

Experimental results are reported in Figure 1. The pre-
cision, recall and F-measure are the same because the
memory-based approach makes predictions after each action
(e.g. the number of prediction opportunities is the same as
the number of predictions made.)

Compared to the statistical approach, EM converges on
more sessions for the Linux domain (see Figure 2(a)) and on
a similar number for the Monroe domain (Figure 2(b)). Pre-



cision is slightly lower on both domains (see Figure 2(a) and
2(b)), although probably not significantly different. (Blay-
lock and Allen 2005b) does not report variance for their
data. However, recall is much higher for the memory-based
approach on both domains. An increase in precision at the
expense of recall is expected given that the statistical rec-
ognizer only makes predictions when a certain confidence
threshold was achieved.

Event-stream processing

Algorithms that implement recognition of complex events
should be able to generate incremental predictions, after
each action is observed, thus offering early predictions.
They also need to be fast at this incremental recognition task
(e.g. faster then the next action can take place so that the user
of the recognizer system can take counter-action).

In the previous section we presented our incremental re-
trieval algorithm. We evaluated its performance on the goal
schema recognition task in the Linux and Monroe domains.
Specifically, we measured the convergence point - how
soon in the unfolding of a plan it starts making the same
correct prediction. This was measured both in terms of ob-
served actions as well as in terms of percentage with respect
to the average number of actions of converged sessions.

In terms of convergence point, EM converges with ap-
proximately the same speed as the statistical approach (after
seeing 63%, 57% and 51% of actions in sessions that con-
verged, compared to 59%, 55% and 57%), but the length of
converged session is lower (4.30, 4.14, 4.48 compared to 5.9,
7.2 and 7.2). This might be due to the fact that the statisti-
cal approach only makes predictions when above a certainty
level, for which it needs to see more actions.

Other Applications

Our episode representation also stores the context and out-
come of an episode, which can be used as retrieval cues.
This enables contextual reasoning tasks to be performed
by an external system using such a memory module. For
example, in a planning application, given a goal and a cur-
rent state of the world, the system can answer questions like
‘what is the action most likely to lead to the accomplishment
of the goal?’. Such a task can be implemented by querying
memory for previous episodes with similar goals and similar
partial states.

The complex event recognition algorithm enables other
predictions tasks, besides the type of plan being observed.
Using the results of the recognition algorithm, an external
application can predict the outcome of complex events (by
extrapolating from a similar event that happened in the past),
the goals of the agent executing the actions observed, or the
next action to be observed.

The episodes stored by memory are particular instances of
more generic complex events in the world and can provide
useful data for mining algorithms that can abstract away var-
ious event types or relationships in order to build complex
event patterns.

In complex domains it is likely that an agent will carry on
multiple plans at the same time, interleaving their actions. A
recognizer will have to be able to deal with these different

plans unfolding at the same time and still perform recogni-
tion on such data. We believe that the proposed recognition
algorithm lends itself easily to this task given that episodic-
based recognition is already able to entertain multiple hy-
potheses at the same time.

Conclusions

This papers argues that complex event recognition can ben-
efit from research into enhancing intelligent agents with
episodic memories.

We presented our work on building a generic episodic
memory that is separate from the application itself and
whose purpose is to provide episodic storage and retrieval.
The proposed representation scheme stores not only se-
quences of events but also their contexts and outcomes, de-
scribed in terms of an underlying knowledge base. Such
episode structures are multi-functional in that they can be
used for various tasks like planning, prediction and explana-
tion. Adding semantics to individual actions enables a more
accurate similarity assessment of both simple and complex
events.

We also described an incremental recognition algorithm
for complex events based on such similarity. An evaluation
on a goal schema recognition task on two datasets showed
this algorithm is as accurate as a state-of-the-art statistical
approach and quite scalable. The same recognition algo-
rithm can be used to generate other kinds of predictions.
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